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Quintets: the Probabilistic Theory of the Structure Invariant q)h + (l)k + (lh + q)m + q)n* 
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It is assumed that a crystal structure in P1 is fixed and that the 15 non-negative numbers R1, R2, R3, 
R4, Rs; R12, R13, R I4, R15, R23, R24, R25, R34, R35, R45 are also specified. The random variables (vectors) 
h, k, !, m, n are assumed to be uniformly and independently distributed in the regions of reciprocal space 
defined by 

IEnI=Ra, IEkl =R2, lEd =R3, IEm[ =R4, IE,,I =R5; (1) 

[Eh+kI=R12, ]Eh+,I=R13, ]Eh+ml=R14, [Eh+.[=Rxs, [Ek+I[:R23, 
IEk+mI=R24, [Ek+.,I=R25, [El+ml=R34, IE.+nI=R35, [Em+nl=R45: (2) 

and 

h + k + l + m + n = 0 .  (3) 

Then the structure invariant q~ = q~h + q~k + (tOl + (#m -~ (Pn, as a function of the primitive random variables 
h, k, I, m, n, is itself a random variable, and its conditional probability distribution, given (1) and (2), is 
derived. The distribution leads to estimates for cos q~ in terms of the 15 magnitudes (1) and (2). 

1. The probabilistic background 

Suppose that a crystal structure consisting of N atoms 
(not necessarily identical) per unit cell in P1 is fixed 
and that the 15 non-negative numbers RI, R2, R3, R4, 
Rs; R12, R13, R14, R15, R23, R24, R25, R34, R35, R45 
are also specified. Define the fivefold Cartesian prod- 
uct W ×  W ×  W ×  W ×  W of reciprocal space W to 
be the collection of all ordered quintuples (h, k, l, 

* Presented at the Intercongress Symposium: Direct Methods in 
Crystallography, August 3-6, 1976, Buffalo, New York, Abstract 
PB13; and at the ACA Meeting, August 9-12, 1976, Evanston, II1., 
Abstract SD3. 
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m, n) where h, k, 1, m, n are reciprocal vectors. Suppose 
next that the ordered quintuple of reciprocal vectors 
(h, k, l, m, n) is a random variable which is uniformly 
distributed over the subset of W × W × W × W × W 
defined by 

[Eh[=R1, [Ek[=R2, [EI[=R3, [E,,,] =R4,  [En]=Rs;(1.1) 

IEh+kl=R,z, [Eh+,[=R13, IEh+ml=R14, IEh+,I=Ras,  

IEk+d=R23, IEk+ml=R24, IEu+.,I=R25, [E,+mI=R34, 

IE, +,1 = R35, IE,. +.1-- R45 ; (1.2) 

and 
h + k + l + m + n = 0 .  (1.3) 
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It follows that the random variables h, k, 1, m, n, the 
components of the ordered quintuple (h, k, 1, m, n), 
are not independently distributed in reciprocal space. 
In order to ensure that the domain of the random 
variable (h, k, 1, m, n) be non-vacuous, it is necessary 
to interpret the exact equality IEhI=R1 of (1.1), for 
example, as an inequality, R1 < IEhl < R1 + dR,, where 
dR1 is a small positive quantity, etc. Then the structure 
invariant 

(~0 = q)h "~- ~0k -[- q)l -Jr- (/)m "[- (Pn, (1.4) 

as a function of the primitive random variables 
h, k, i, m, n, is itself a random variable, and its con- 
ditional probability distribution, given the 15 magni- 
tudes (1.1) and (1.2), the major result of this paper, is 
derived. To this end it is necessary first to obtain the 
joint conditional probability distribution of the five 
phases 9h, ~Pk, qh, q~m, ¢Pn, given the 15 magnitudes 
(1.1) and (1.2). 

Finally, the following usual definition is made 
N 

0.,= ~ fT,  (1.5) 
j = l  

where J~ is the zero-angle atomic scattering factor for 
the atom labeled j. In the X-ray diffraction case the 
J~ are equal to the atomic numbers Zj and are therefore 
all positive; in the neutron diffraction case some of 
the J~ may be negative. 

2. The joint conditional probability distribution 
of the five phases q~h, q~k, ¢Pl, q~m, qJn, given the 

15 magnitudes IEhl, IEkl, IEI[, IEml, IE.I; ]Eh+k[, [Eh+l[,  
IEh +m[, [Eh +n[, [Ek +![, IEk +m[, IEk +n[, ]Ei+ml, 

]El +. l ,  ]Em + n ] 

Under the hypotheses of § 1, denote by 
P5115 =P(41, 42 ,  43 ,  44., 4 5  IR1, R2, R3, R,, R5; 

R12,R13,R14,Rls,RE3,RE4,R25,Raa,,R35,R,~5) 
(2.1) 

the joint conditional probability distribution of the 
five phases q~h, q~k, qh, q~m, q~n, given the 15 magnitudes 
(1.1) and (1.2). Then PsIls is obtained from P15 
[equation (3.3) of the previous paper, Fortier & 
Hauptman (1977)] by fixing the 15 magnitude variables 
R1, R2, ..., R4s of the latter in accordance with the 
scheme defined by (1.1) and (1.2), integrating P~s with 
respect to the ten phase variables 412, ~x3, ..., 445 
from 0 to 27r, and multiplying the result by a suitable 
normalizing parameter: 

l fi'~ f l  ~ P5115 = ~- ... P15d412d413d414...d445 . 

(2.2) 

As of now it has not been possible to carry out the 
tenfold integration (2.2) exactly. Furthermore, even if 
these integrations could be performed, it seems very 

likely that the resulting expression would be too 
intractable to be useful in the applications. For these 
reasons an approximation technique has been devised 
as follows: first the Taylor expansion of P15 is found. 
The tenfold integration (2.2) is then readily performed. 
Finally, by analogy with an earlier formula for the 
quartet structure invariant (Hauptman, 1975, 1976), a 
functional form for P1115 is assumed the Taylor ex- 
pansion of which, correct to terms up to and including 
those of order 1/N 3/2, agrees with that of (2.2). Thus, 
substituting the Taylor expansion of P15 [equation 
(3.3), Fortier & Hauptman (1977)-I into (2.1) and 
carrying out the tenfold integration, one readily finds 

P5115 ~ 1 I 2 (150.3_ 10620.30.4 ~- exp 

+ 0.20.5)R1R2RaR4R5 

X COS ((I) 1 -~- (~2 -~" (~3 -'~- (~)4-'1- t~5) / 

E 
_1 

0.3 2 2 2 x 1 + -~2(R1R2R12+9 similar terms) 

+ 0 " 3  2 2 2 2 
0.-~2 (R1R23R45 + 14 similar terms) 

2a3 (30.2_0.20.4)RIR2RaR4Rs(R2 2 + R2 a 0..9/2 

+ R24 + R25 + R223 + R24 + R2s + R324 + R325 + R2s) 

X COS ( 4  1 21- 4 2 "F 4I) 3 -t'- 4 4. -'1"- 4 5 )  

20.3 R2R3R4Rs(R12R34+R12R35 + ~ 2 / 2 R  1 2 2 2 2 

R R 2 ± R  2 R z ± R  a R 2 m R  2 R 2 12 45 q- 13 24 -'V 13 25 q- 13 45 
2 2 2 2 2 2 2 2 + R 14R23 + R14R25 + R14Ra5 + R1sR23 
2 2 2 2 2 2 2 2 

+ R15R24 -t- R15R34 + REAR45 + RE4R35 

+R25R24) cos (41  "q- 42-{- 43 + 44-{- 45)] (2.3) 

which is the Taylor expansion of Pst ls  correct up to 
and including terms of order 1/N 3/2, and K is a 
suitable normalizing parameter independent of 
41, ..., 45. Although (2.3) is a good approximation to 
P5115 when the values of the ten parameters RI 2, R13,... 
are small, this approximation is clearly not satis- 
factory when some of R12, R13, ... are large because 
(2.3) may then become substantially negative, which 
no well-behaved probability distribution can do. 
Employing the formula 

x = exp (log x) (2.4) 

and expanding the logarithm of the right hand side 
of (2.3), one readily transforms (2.3) into pure ex- 
ponential form 
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1 jV20"a 3 
"~ R 1 2 R 3 4  P5115 ~ exp ).La2-~ ~ 2 2 

20-3 (30-2_0"20"4)~ R22 
a-~29/2 10 

2 (150"3_100"20"30"4+0"220"5)1 

(41  07 4 2  07 4 3  07 4 4  07 4 5 ) ~  X RIR2R3R4R5 COS 
) 

(2.5) 

correct to order 1/N 3/2, where 

2 2 2 R 2 R 2 ± D 2  D2 ± D 2  D2 ~ D 2  R 2 R 1 2 R 3 4  = 12 34T*X12zx35 TaX12ax45 T'lX13 24 
15 

2 2 2 2 2 2 2 2 +R13R25+R13R45+R14R23+R14R25 
2 2 + R  2 2 2 2 2 2 +Rx4Ra5 5R23+RlsRE407RlsR34 
2 2 2 2 2 2 (2.6) 07 R23R45  + R24R35  07 R z s R 3 4 ,  

~" R22=R22 07 R23 07 R24 07 R2 s 
10 

07 R223 07 R24 + R25 + R24 07 R325 07 R25, (2.7) 

and K is a suitable normalizing parameter independent 
of 41, ..., 45. Although (2.5) is always positive and is 
therefore almost surely a better approximation to 
P5115 than is (2.3) for all values of the 15 parameters 
R1, R2, ... R45, presumably a still better approxima- 
tion is available as reference to the analogous distribu- 
tion for quartets [Hauptman (1975) equation (2.5)] 
suggests. The earlier (quartet) distribution is in the 
exponential-Bessel-function form. It is therefore plau- 
sible to assume that the correct functional form for 
P51 15 is an exponential multiplied by ten Bessel func- 
tions. Under this assumption, and with the employ- 
ment of the relation, 

Io(z)~_exp(~)ifz is small, (2.8) 

where K is a suitable normalizing parameter, 

20-3(30.2-0.20"4) 
U12= [ ~  R2R2- 0"912 R1R2R3R4R5 

X COS ( 4  1 07 (~2 07 4 3  07 IJ)4.07 4 5 )  

+(.30-2--__0.20.4"~ 2 2 2 271/2 
(2.10) 

etc., and Io is the modified Bessel function. In a similar 
way the following alternative exponential-Bessel- 
function form for P5115 is derived. 

1 {+ 
P5115 ~ - ~ e x p  (150"3-100"20"3o"4070"20"5) 

x R1R2RaR4R5 cos (~1 0 7 4 2  074307440745) t 
. /  

X r[ Io(2R12V12) (2.11) 
10 

where again K is a suitable normalizing parameter and 

2 
f0"3 D 2 D 2  ± 0"3 

2 2 x [0"3(R34 + R25 + R]5) - 2(30" 2 -0-20"4)] 

x R1R2R3R4R5 cos (~a + q)2 + 43 + ~4 + ~5) 

1 2 2 + 4-   [0"3(R34+R 5+R15) 

(7 .,- " C I 2 R 2 R 2 1 ~ 2 ~  1/2 - 2 ( 3 a 2 -  2u41_1 3 4,-5j" , (2.12) 

etc. Since P5115 is a function of the sum ~ = ~ 1 + 4 2  
07 4 3 07 ~ib 4 07 ~lb5, the conditional probability distribu- 
tion of the structure invariant q~ = q~h + q~k + q~ 
+qgm+q~n, given the 15 magnitudes (1.1) and (1.2) in 
its second neighborhood, is immediately obtained, as 
shown next. 

the pure exponential form (2.5) for P5115 is readily 
transformed into the exponential-Bessel-function 
form: 

Pslx5 "~ 
 F2d 

R12R35+R12R45 ~. exp )/a2__2_~/2/2 (R2zR~4 07 2 2 2 2 
t.L 

2 2 2 R 2 ± 0 2  R 2 2 2 07R13R2407RI3 25Tlx13 4507R14R23 
2 2 2 2 2 2 2 2 07 R14R25 07 R14R35 07 R15R23 07 R15R24 

R 2 R 2 ± R  2 R 2 ± R  2 R 2 2 2 07 15 3 4 T  23 45 T 24- 3 5 + R 2 5 R 3 4 )  

3 ] 07 a----~ (150.3-- 100"20"30" 4 070"20"5) 

X R1R2R3R4R5 cos (4) 1 + 4)2 + 453 + ~4 + 45) / 
.) 

X l-I Io(2R12U12) (2.9) 
10 

3. The conditional probability distribution 
of  the structure invariant q~ = q~h + q)k "[" q)l "1" (Dm "4" q)n, 

given the 15 magnitudes IEh[, IEkl, IEll, IEml, IEnl, 
]Eh+k], ]Eh+d, ]Eh+m], ]Eh+n], ]Ek+d, ]Ek+ml, IEk+n], 

]El + ml, [E~ + n[, [Em + n] 

Under the hypotheses of § 1, denote by 

Pt l Is=P(4[Rb R2, R3, R4, Rs; R12, R13, R14, R15, 
R23, R24, R25, R34, R35, R45) (3.1) 

the conditional probability distribution of the struc- 
ture invariant 

(P = q)h .3i- (/Ok O 7 q)l 07 q)m 07 (/On, (3.2) 

given the 15 magnitudes (1.1) and (1.2) in the second 
neighborhood of ~o. Then Px115 is immediately ob- 
tainable from (2.9) and (2.11) respectively. Thus, cor- 
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rect up to and including terms of order 1/N 3/2, the 
major results of this paper are given by 

1 f~ 2663 2 2 2 2 2 2 
Pi l l5  -~ ~ e x p  ~La~2/2(gi2R34+gi2R35+gi2R45 

+ R  E 2 2 2 2 2 2 2 3R24 + RIaR25 + Ri3R45 + R14R23 
2 2 2 2 2 2 2 2 +R14R25 +Ri4R35  + R i s R 2 3  + R i s R 2 4  

+ R  2 2 2 2 2 2 2 2 5R34 + R23R45 + R24R35 + REsR34) 

2 (15663_10662663664+662665) ] 

RiR2R3R4R5 cos q~ x 
/ 

× Io(2R12X12)Io(2Ri3X13)Io(2R14X14) 

× Io(2Ri5Xis)Io(2R23X23)Io(2R24X24) 

× Io(2R25X25)Io(2R34X34)Io(2R35X35) 
× Io(2R45X45), (3.3) 

where K is a suitable normalizing parameter, 

X12 = [~__32 R Z R 22 _ 266 3( 3662 - 66 266 4) 
6 6 9 2 / 2  RIRER3R4R5 

× ( ) 3 , /3.4/ 
\ 

etc., and, by the alternative exponential-Bessel form 
for Pi l l 5 ,  

1 { +  
PlllS--~ -~- exp (15663--10662663664 

+ 662665)R iR2R3R4R5 cos ~ t  
. I  

× Io(2R12 Y12)Io(2R13 Y13)Io(2R14Y14) 

x Io(2R 15 Yi s)Io(2R2 3 Y2 3)Io(2R24 Y24) 

X I0(2R25 Y25)I0( 2R 34 Y34)Io(2R 35 Y35) 

x Io(2R45 Y45), (3.5) 

where again K is a suitable normalizing parameter and 

R~R2 + -o.-~-2/21663(R34 + R25 + R~,5) y~2_= } 66 ~ 2 2  663 2 2  

-- 662664)] RIR2R3R4R5 cos -2(366 2 
_l 

1 2 2 2 2 
+ ~ [663(R34 + R35 + R45) 

2 2 2 }  1/2 
- 2(366~- 662664)] 2 e3R4R5 , (3.6) 

etc. 

3.1. Exponential form of the distribution 
Although, as described earlier, the pure exponential 

form of the distribution is not expected to be as ac- 

curate as either of the exponential-Bessel-function 
forms (3.3), (3.5), because of its simplicity, ease of cal- 
culation, and ability to yield results which are at least 
qualitatively correct, it appears worthwhile to give the 
exponential form as derived from (2.5): 

1 
P i l l 5  -~ ~- exp (AR1R2R3R4R5 cos ~) (3.7) 

where A, the 'discriminant' of q~, is the fourth-degree 
polynomial in the ten R's, R12, R~ 3, ..., 

26633 2663 
= RlzR34--  ff2--~/2 10 A o29- ~ 2 2 (3662_662664)~ R22 

2 3 
+ ff2----29-Tg (15663-- 1066266364-1-662665), (3.8) 

and K [=2rclo(AR1R2R3RaRs)] is a suitable nor- 
malizing parameter independent of ~. Clearly (3.7) has 
a unique maximum at ~ = 0  or 4~=~t according as 
A > 0 or A < 0 respectively. A disadvantage of (3.7) is 
that it is incapable of giving a maximum between 0 
and rc whereas (3.3) or (3.5) may have a maximum 
anywhere in the interval (0, re). It is worth noting that 
if the ten 'cross-terms' R12, R13, ..., R45 are mostly 
large then Pl115, whether given by (3.3), (3.5) or (3.7) 
has a unique maximum at ~ =  0, in accordance with 
the prediction of the first row of Table 2 of a previous 
paper (Hauptman, 1977). If, on the other hand, cer- 
tain of the cross-terms R12 , R13 , ..., R45 are large and 
others are small, then q~ may well be equal to re, as 
shown next. 

3.2. First special case 
The special case that 

R ~ 2, R 1 a, R 14, R 15 are all large, (3.9) 

but 

R2a"-'R24~-R25~R34 ~-R35~R45~-O. (3.10) 

In this special case (3.3) and (3.5) both reduce to 
[-since Io(0)= 1] 

1 { 2  3 
P i l l s -  ~ ~-exp ff---~7~ (1 5663 10662663664 

+a~trs)R1R2R3R4Rs cos q~} 

× Io(2R12X12)Io(2R x 3X13)Io(2R14X14) 

× lo(2R15X15), (3.11) 

where X12 is given by (3.4), etc. 
Hence (3.11) has a unique maximum at ~=rc  pro- 

vided that Ra2, R13, R14 and Rls are sufficiently 
large so that, in this special case, q~--~ re, in agreement 
with the prediction of the second row of Table 2 of 
Hauptman (1977). It is noteworthy that, in this special 
case, A (3.8) reduces to 
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203 (3o.2_o.2o.) (R22 + R~3 + R24 + R25) A = - -9-- ~ 
0.2 

2 3 
+ ~2-~/2 ( 1 5 a 3 -  100.20.30.4+0.20.5)<0 (3.12) 

so that (3.7) also has a max imum at 4 = n ,  imp ly ing  
again that  go -~ n. 

Clearly there are four other special cases analogous 
to (3.9) and (3.10), obtained by symmetry, for which 
go'-~-n, in agreement with rows 3-6 of Table 2 of 
Hauptman (1977). 

3.3. Second special case 
The special case that 

R12, R13, R23 are all large (3.13) 

but 

R14~_R15~_RE4~_RE5~_Ra4~Ras~_R45~O. (3.14) 

In this special case (3.3) and (3.5) both reduce to 

Pl115 ~ - ~-exp (150.3 - 100.20.30.4 + 0.~0.5) 

x R~RzR3R4R5 cos q~} or 

x Io(2R1 zX12)Io(2R13X13)Io(2R23X23) (3.15) 
then 

where X x2 is given by (3.4) etc. 
Hence (3.15) has a unique maximum at • = n pro- 

vided that R~2, R13 and R23 are sufficiently large so or 
that, in this special case, q)-~ n, in agreement with the 
prediction of the seventh row of Table 2 of Hauptman 
(1977). Again, in this special case, A (3.8) reduces to 

20-3 (3o.2_o.2o.4) (R22 + R23 + R23) A = - --9- ~ 
17 2 

2 a 
n t- ~ (150.3 -- 100.20"30.4 n t- 0.20"5) < 0 (3.16) 

so that (3.7) also has a maximum at 4~ = n, implying 
again that q) ~ n. 

Clearly there are nine other special cases analogous 
to (3.13) and (3.14), obtained by symmetry, for which 
q)---n, in agreement with rows 8-16 of Table 2 of 
Hauptman (1977). 

Finally, in the special case that all cross-terms 
R12, R13, ..., R45 are very small, (3.5) and (3.7) both 
reduce to 

1 {+ 
Pl115~ ~-exp (15a]-lOaza3a4+a2a5) 

x R1R2R3R4R 5 COS qb}, (3.17) 

so that, in this very special case, q) is probably equal 
to zero. 

579 

3.4. Expected values 
Although the conditional expected value of cos q) 

may be obtained from (3.3) or (3.5), the result is 
complicated and does not lend itself readily to nu- 
merical calculation. It seems better to use the ex- 
ponential form (3.7) which leads to a simple formula 
having at least approximate validity: 

8(COS go JR1, R2, R3, R4, Rs; 

R12,Rts, R14,Rxs,Rz3,Rz4,R25,R34,R3.s,R,~5) 

II(AR1RzR3R4Rs) 
- Io(AR1R2R3R4Rs)' (3.18) 

which is positive or negative according as A > 0  or 
A <0.  In the special case that all ten cross-terms 
R12, ..., R45 are large then A > 0  and (3.18) is positive; 
in the special case that (3.9) and (3.10) hold, or that 
(3.13) and (3.14) hold, then the discriminant A is 
negative and (3.18) is negative too. 

3.5. A conjecture 
It has been seen that, according as 

A>>0 (3.19) 

A<~O, (3.20) 

q)--~ 0 (3.21) 

go "" x (3.22) 

respectively. It is plausible to conjecture that if 

A -~ 0 (3.23) 

then 

n 
q)_~ -t- 2 '  (3.24) 

although the reliability of the estimate (3.24) is clearly 
not as high as that of (3.21) or (3.22). 

4. Concluding remarks 

The conditional probability distribution of the struc- 
ture invariant (3.2), given the 15 magnitudes (1.1) and 
(1.2) in its second neighborhood, has been found. Just 
as the analogous distributions for quartets have al- 
ready proven to be useful in the applications, it is 
likely that the distribution derived here, in particular 
(3.3) and (3.5), will have an important role to play in 
devising improved techniques of phase determina- 
tion, especially for very complex structures. 

It should be observed finally that in the presence of 
one or a few heavy atoms the distributions derived 
here are sharpened, thus leading to more reliable 
estimates of q~, as anticipated. In the extreme case that 
a 3 = 0  (possible only in the neutron diffraction case 
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when some of the j) may be negative), a situation which 
appears rarely, if ever, to occur in practice, the distribu- 
tions (3.3) and (3.5) reduce to the conditional distribu- 
tion of ~0 when only the five magnitudes (1.1) of the 
first neighborhood are given, so that nothing is gained 
by going to the second neighborhood of qg. Since the 
same phenomenon has already been observed for 
quartets (Hauptman, 1976), it is beginning to appear 
that the condition a3 ~ 0 may be a necessary one for a 
solution of the phase problem to exist; but a final 
resolution of this question will have to await further 
developments. (There is some evidence which suggests 
that the more stringent requirement (3a 2 - 6264)/63 > 0 
may in fact be necessary.) In the X-ray diffraction case 
there is no problem since then every j~ is positive, and 
0"3 is therefore also positive. Furthermore, in the ap- 
plications to neutron diffraction the condition 2 3 a3/a 2 = 0  
appears rarely, if ever, to be fulfilled, so that the results 
derived here are almost sure to be useful for neutron 
diffraction as well. 

Finally, the initial applications of quintets have been 
made (Fortier, Fronckowiak & Hauptman, 1977; 

Fronckowiak, Fortier, De Titta & Hauptman, 1977). 
These show that quintets will be at least as important 
in the applications as quartets or triples, and strongly 
suggest that the use of all available invariants and 
seminvariants will be more useful still. 
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The electron density distribution of potassium azide is determined from high-resolution X-ray intensity 
measurements. The calculated distributions of errors in the experimental densities are included. Refine- 
ment of high-order X-ray data yields parameters in good agreement with neutron diffraction results. The 
inclusion of high-order data in calculating the deformation density is found to be necessary to obtain a 
quantitative distribution. Densities calculated with only low-order data are qualitatively similar but lack 
detail in the shape as well as in the height of the bonding features. 

Introduction 

In recent years, methods have been developed for 
direct experimental determination of the electron 
distribution in solids using accurate X-ray and neutron 
diffraction measurements (Coppens, 1975). An obvious 
objective is the comparison of experimental results 
with theoretical calculations of the electron density 
distribution. For several reasons, most previous com- 
parisons have been unsatisfactory (Coppens & Stevens, 
1976). The electron density distribution has been found 
to be a very sensitive function of the quality of the 
wavefunction, but because of computational limita- 
tions, the sophisticated calculations necessary are at 
present available only for very small molecules. On the 
other hand, small-molecule systems are experimentally 
difficult since they are often gases or liquids at room 
temperature. 

Experimental studies of the electron density dis- 
tribution in the azide ion have been undertaken for 
comparison with ab initio molecular-orbital calcula- 
tions (Stevens, Rys & Coppens, 1977a, b). The present 
study of potassium azide complements a recent experi- 
mental study of the azide ion in the structure of NaN3 
(Stevens & Hope, 1977). The studies of the azide ion 
in two different crystal forms provide additional 
information on the effects of the crystal field and 
thermal smearing. 

A detailed analysis of the experimental error dis- 
tribution has been included so that the significance of 
features in the experimental density maps can be 
assessed. 

Experimental methods 
X-ray data collection and processing 

A small single crystal with dimensions 0.22 x 0"20 x 


